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Abstract

Accurate cell counting is a critical task in biological im-
age analysis. In this paper, we evaluate several variants of
the c-ResUnet architecture, including the integration of at-
tention gates and different activation functions (ReLU and
ELU), to improve segmentation performance in challeng-
ing cell imaging conditions. Performance is evaluated us-
ing precision, recall, F1 score, MAE, and MPE metrics.
Our results show that while attention-based models offer
improved segmentation in cluttered regions, they can also
lead to overconfident predictions that merge adjacent cells.

1. Introduction

In this paper, we will investigate using a deep learning
model to automate cell counting from microscopy images.
Manual cell counting is time-consuming, subjective, and
prone to human error, especially when dealing with densely
populated or overlapping cells. It is often done to ensure
experimental accuracy, consistency, and to monitor cell
health and viability. Automating this process could signifi-
cantly improve efficiency and reproducibility in biomedical
research and clinical diagnostics, as well as potentially
improving accuracy. Modern-day non-manual cell counting
techniques are often found to be inaccurate and don’t work
for smaller cells. This task is interesting not only due to
its direct real-world relevance, but also because it poses
unique challenges like variable cell shapes, densities, and
overlaps.

In this paper, we focus on replicating and building
on a study conducted by the University of Bologna, that
focuses on evaluating the effectiveness of “Automating cell
counting in fluorescent microscopy through deep learning
with c-ResUnet” [1]. This paper introduces c-ResUnet,
a U-Net-inspired deep learning model for automatic
cell counting via binary segmentation (a threshold was

calculated to determine whether the cell contained a cell
or not). The model segments fluorescent neuronal cells
and retrieves their count by detecting these individual
objects. Through ablation studies, the authors show that
performance is significantly improved by using weight
maps that emphasize cell boundaries, especially in images
with many clumps of cells. The paper also found that
c-ResUnet outperforms similar models in both detection
(F1 score = 0.81) and counting accuracy (MAE = 3.09).
The model and dataset are publicly released to support
further research in biological imaging and deep learning
applications, and so we used both the model code and
the dataset for this paper [6]. In our paper, we use the
same dataset and baseline c-ResUnet model to conduct a
study that investigates the impact of incorporating attention
gating into the architecture. Attention gates help the
model focus on relevant regions of the image, by learning
information such as what the target structures are shaped
like and ultimately filtering out less informative features,
which may improve segmentation performance in cluttered
or low-contrast images [4].

One challenge in this domain is the limited avail-
ability of well-annotated microscopy data of every cell
type, which makes it difficult to train large models of any
type of cell of interest effectively. Additionally, we were
constrained by limited computational resources and time.
Specifically, we were running into memory (RAM) issues
when using larger sample sizes. While batch size reduction
and training-time data augmentation helped mitigate this
to some extent, we were still limited by how much data
we could process at once. This paper explores whether
architectural modifications, such as attention gating, can
help compensate for small sample sizes. Our results
show that while attention-based models offer improved
segmentation in cluttered regions, large sample sizes are
still needed for a strong cell counting model.
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1.1. Related Work

The accurate segmentation and counting of cells in
microscopy images are a critical step for many biological
and medical applications, yet it remains challenging
due to overlapping cells, varying cell morphology, and
imaging artifacts. Traditional convolutional neural network
architectures like c-ResUnet have demonstrated strong
performance in semantic segmentation of cells, providing
pixel-wise delineation but often struggling with precise
instance separation in crowded regions. On the other hand,
transformer-based instance segmentation models [2] such
as Cell-DETR (attention-based cell detection transformer)
leverage attention mechanisms to explicitly distinguish
individual cell instances, potentially offering improved
accuracy in images with many clumps of cells. While
researching transformer-based models like DETR that use
attention mechanisms for improved instance segmentation,
we became interested in whether integrating attention more
directly into convolutional architectures could enhance
performance on cell segmentation tasks. This led me to
explore attention gating [4], a technique that incorporates
spatial attention within CNNs to help the model focus on
relevant image regions, and hasn’t been applied to cell
counting with ResUnets in previous literature. Inspired by
this, I decided to investigate how adding attention gating
to the c-ResUnet architecture affects segmentation and
counting accuracy. This study aims to directly compare the
performance of c-ResUnet and c-ResUnet with attention
gating mechanisms on the same microscopy dataset to
evaluate their respective strengths and limitations in cell
segmentation and counting, ultimately informing model
selection for automated microscopy analysis pipelines.

Recent work by the University of Austria, Innsbruck
in 2024 [3] highlights the promise of vision transformers
(ViTs) for weakly-supervised microorganism counting.
The paper found that ResNets perform better than vision
transformers on a variety of microorganism datasets mainly
because they handle small datasets and low-density images
more effectively. Their skip connections help train deeper
networks without overfitting. Vision transformers generally
need large datasets to perform well, but some advanced
vision transformer variants can still compete when multi-
scale features are effectively leveraged. In cell counting,
multi-scale features mean detecting both tiny details like
the shape of individual cells (small scale), and broader
patterns like how cells are spaced or clustered across the
whole image (large scale). While we don’t evaluate this
model, it highlights the importance of attention-based
mechanisms in vision.

1.2. Dataset

The Fluorescent Neuronal Cells dataset from the Uni-
versity of Bologna [1] consists of 283 high-resolution mi-
croscopy images of mouse brain slices of size 1600 by 1200,
where neurons are highlighted via fluorescence labeling.
Due to variability in brightness, contrast, and complex cell
shapes, preprocessing was necessary to facilitate accurate
segmentation. The researchers applied Gaussian blurring
to reduce noise and used automatic histogram-based thresh-
olding to generate initial binary masks identifying potential
neuronal cells. These masks were then manually parsed to
remove false positives and artifacts, ensuring high-quality
ground-truth labels for training. This combined automatic
and manual pipeline helped create reliable segmentation
masks despite the challenges posed by image variability, ar-
tifacts, and clustered cells, enabling robust model training
and evaluation. These masks and images were cropped to
512 by 512 to create more data. Data augmentation was also
applied to increase the size of the dataset, but was not used
for our new proposed model architectures. They provided
this dataset and the cropping method, so this was used for
this paper.

2. Methods

Researchers at the University of Bologna [1] approached
the task of segmenting and counting fluorescently labeled
neurons using a supervised learning framework with
convolutional neural networks. The input to the model is
a picture of cells taken under a fluorescent microscope.
Their main and best performing architecture, c-ResUNet,
shown in Figure 1, includes modifications such as an initial
1×1 convolution and an additional residual block with 5×5
filters to improve context understanding, especially for
overlapping cells.

In ResUnets, residual connections are implemented
within each encoder and decoder block, where the input to
the block is added back to its output after a series of convo-
lutional layers. This helps mitigate vanishing gradients and
enables deeper feature learning by allowing the network to
learn residual mappings. Skip connections concatenate en-
coder and decoder layers and this ultimately makes the loss
landscape more smooth and easier to train [5]. To improve
the relevance of the features passed through these skip
connections, we proposed applying attention gates to this
c-ResUnet architecture as attention gates learn to ignore
irrelevant regions and highlight important features, such as
the neuronal cells, from the encoder [4]. Each attention
gate takes the encoder feature map and the decoder’s gating
signal, and produces an attention-weighted output that is
concatenated with the decoder’s upsampled feature map
before further processing. Figure 2 is a schematic of what
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Figure 1. c-ResUnet architecture [1]

the proposed additive feature would look like. The

Figure 2. Attention Gate Schematic [4]

fluorescent neuronal cells dataset was split into training,
validation, and test sets. Our training to validation ratio
was 80% to 20%. From each image, twelve 512×512 sub-
images were extracted and augmented using rotation, noise,
brightness variation, and elastic deformation. Training used
the Adam optimizer with early stopping and a weighted
binary cross-entropy loss. This loss was used to address
class imbalance in our segmentation task as there were
more negatives (i.e. the background) than positive classes
(the cells). So, we assign different weights to the positive
(cell) and negative (background) classes. By increasing the
weight for the minority class, the model is penalized more
heavily for misclassifying important but underrepresented
pixels. Formally, for each pixel, the loss is defined as:

L = −wp · y · log(ŷ)− wn · (1− y) · log(1− ŷ) (1)

where y ∈ {0, 1} is the ground truth label, ŷ ∈ [0, 1] is
the predicted probability, and wp = 1.5, wn = 0.5 are the
weights for the positive and negative classes, respectively,
as chosen in [1]. The weights are chosen to compensate for
class imbalance, encouraging the model to better learn the
minority class.

We tested 4 model architectures.

Model Activation Optimizer Augmentation Sample Size Batch Size
c-ResUnet + Attention (ELU) ELU Adam (10−4) Yes 600 4
c-ResUnet + Attention (ReLU) ReLU Adam (10−4) Yes 600 4
c-ResUnet (Morelli & Clissa [1]) ELU Adam (10−4) Yes Full 8
Simple c-ResUnet (fewer samples) ELU Adam (10−4) No 500 8

Table 1. Summary of model architectures and training configura-
tions.

To understand the impact of architectural and training
decisions, we compared four versions of c-ResUnet. One
model we evaluated was the original c-ResUnet model
from Morelli and Clissa [1] which used the entire 2556
cropped image dataset, weight mapping, augmentation,
and artifact oversampling. Their model was trained on
oversampled sub-images containing artifacts to improve
model robustness against false positives. Second, they
implemented a custom weight map that emphasizes the
borders between touching cells, so the model could better
separate clumped neuronal cells. We also retested Morelli
and Clissa’s c-ResUnet model with a reduced-data variant
with no augmentation performed on the data and a smaller
sample size of 500 samples to simulate limited training
conditions due to compute limitations and real-world data
limitations for many types of cells. This model did not
use custom weight maps for the loss function or artifact
oversampling, but instead used the weighted loss function
described in Equation 1. We next introduced attention gates
and experimented with both ELU and ReLU activations to
assess their effect on segmentation performance, especially
as the original Attention Unet paper used ReLU. We also
increased the training sample size to 600 samples and used
data augmentation here, to allow for a fair comparison
to a non-attention based baseline model, the simplified
c-Resunet, especially because attention-based models often
require more data to successfully learn. Due to compute
limitations here, we had to decrease the batch size to 4
instead of 8. The ELU-activated attention model was
introduced to enhance feature flow and gradient stability,
especially as the original c-ResUnet paper used this and
ReLU can cause dead neurons in deep architectures. The
ReLU variant however served as a good attention baseline
for comparison. Augmentations, including shifts, flips,
zooms, and rotations, were applied to help the model
generalize better to low-sample scenarios in the attention
models. The details of these models are shown in Table 1.

To refine the predicted binary masks and improve
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cell segmentation, we applied a post-processing pipeline,
inspired by Morelli and Clissa’s [1]. First, we removed
small holes and filtered out objects below a minimum
size threshold of 40 to eliminate noise and artifacts. We
then computed a distance transform on the cleaned mask
to emphasize the centers of objects. Local maxima were
detected in this distance map to serve as markers for
individual instances. Using these markers, we applied
watershed segmentation on the distance map to separate
overlapping or touching regions, effectively delineating
individual cells. This process produced cleaner masks
and improved cell segmentation accuracy, especially in
crowded regions.

To then use these masks to evaluate model perfor-
mance, we could identify the center of each detected cell
as the center of the bounding box around each clump of
white pixels after post-processing. A predicted object was
considered a true positive if its center lay within 40 pixels
of a ground truth object center. This method used cell lo-
calization rather than strict pixel-wise overlap, which made
it particularly suitable for biological cell segmentation
tasks. This allowed us to compute true positives (TP), false
positives (FP), and false negatives (FN).

Hence, throughout training and testing, we could
evaluate our model’s progress using commonly used
metrics for segmentation: F1 score, Mean Absolute Error
(MAE), Median Absolute Error (MedAE), Mean Percent-
age Error (MPE), Accuracy, Precision, and Recall.

The F1 score for binary masks, is defined as:

F1 =
2× True Positive

2× True Positive + False Positive + False Negative
(2)

It is often preferred in medical image segmentation be-
cause it balances Precision and Recall measurements. It can
also be defined as:

F1 Score = 2 · Precision · Recall
Precision + Recall

(3)

Accuracy is the ratio of correctly predicted cells to the
total number of cells:

Accuracy =
True Positive

True Positive + False Positive + False Negative
(4)

In this case, we ignore the background, also called true
negative, as most of the pixels are background, and if con-
sidered accuracy will come out very high, even when the
model doesn’t actually predict all the positives correctly.

Mean Absolute Error (MAE) =
1

N

N∑
i=1

|yi − ŷi| (5)

where:

yi = Ground truth value for sample i

ŷi = Predicted value for sample i

N = Total number of samples

Median Absolute Error (MedAE) = median (|yi − ŷi|)
(6)

Mean Percentage Error (MPE) =
100%

N

N∑
i=1

yi − ŷi
yi

(7)

Precision measures how many predicted positives are actu-
ally correct:

Precision =
True Positive

True Positive + False Positive
(8)

Recall measures the ratio of how many positives were actu-
ally detected:

Recall =
True Positive

True Positive + False Negative
(9)

The final output visualization of the model is a heat map
of probabilities for each image, and after it is generated,
we can use this heat map to visually evaluate failure modes
and visually identify in which cases certain models perform
better than others.

3. Experiments and Results
We evaluated the performance of the four variations of

the c-ResUnet architecture through systematic experimen-
tation. This section summarizes key observations from
training behavior, hyperparameter tuning, threshold analy-
sis, and post-processing.

3.1. Training Dynamics

The introduction of attention gates appeared to alter the
convergence behavior of the model. The c-ResUnet with
ELU and attention gating converged after 45 epochs, com-
pared to 66 epochs for the baseline model without attention.
When using ReLU with attention, convergence was even
faster, stopping at 31 epochs. In each case, early stopping
was triggered due to a plateau in validation loss, suggesting
that the addition of attention accelerates learning but may
also cause earlier overfitting if regularization or data diver-
sity is limited. Training loss and validation loss remained
close until the plateau for all 3 models we trained.

3.2. Learning Rate and Threshold Tuning

We initially experimented with several learning rates
for 10 epochs each. However, 1e−4 consistently produced
the best results in terms of F-1 scores, aligning with the
prior model defined by Morelli and Clissa [1]. Our training
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pipeline included learning rate reduction on plateau,
which likely contributed to consistent performance across
variations.

Threshold selection played a critical role in im-
proving the performance of our models, as evaluated by
the F1 score. The threshold is what was used to convert
the probability maps outputted by the model to a binary
segmentation map. As shown in Figure 3, we evaluated
threshold values across a range to find the maximum F1
score, as we wanted to minimize the trade-off between
precision and recall. The selected thresholds (0.6 for the
official c-ResUnet model, 0.2 for the simple c-ResUnet, 0.3
for c-ResUnet ELU with attention, and 0.4 for c-ResUnet
ReLU with attention) were chosen based on the peak F1
score on the validation set.

Figure 3. Hyperparameter tuning – searching for threshold values
for each model

3.3. Distance Parameter Tuning in Post-processing

Our post-processing pipeline included center-based
matching of predicted and ground truth cell segments, as
described in Methods. The distance threshold for counting
a true positive was tuned experimentally. A value of 40 pix-
els was selected after comparing multiple values, as it best
balanced finding true positives with minimizing false pos-
itives due to common issues in a model like cell merging,
for example.

3.4. Evaluating Performance Metrics

To assess the effectiveness of each model configuration,
we computed key performance metrics as shown in the
tables. These metrics provide a comprehensive view of
both detection accuracy and counting precision.

The metrics for ELU-based c-ResUnet with atten-
tion gating model were very similar to our baseline simple
c-ResUnet. They both have extremely simlar F1 scores of

Metric Value
F1 Score 0.7835
MAE 2.7429
MedAE 2.0000
MPE -0.0282
Accuracy 0.6441
Precision 0.8074
Recall 0.7610

Table 2. Performance metrics for the pre-generated model from
[1]. A c-ResUNet trained with weight maps, artifact oversam-
pling, and larger sample size of 2256 with additional augmenta-
tion. Threshold = 0.6

Metric Value
F1 Score 0.5766
MAE 4.9143
MedAE 2.0000
MPE -0.1074
Accuracy 0.4051
Precision 0.6821
Recall 0.4994

Table 3. Performance metrics for c-ResUNet with no weight maps
or artifact oversampling. Threshold = 0.2, Sample size = 500,
Batch size = 8

Metric Value (ELU) Value (ReLU)
F1 Score 0.5694 0.4886
MAE 5.6000 6.0429
MedAE 2.0000 4.0000
MPE -0.3324 0.1263
Accuracy 0.3980 0.3233
Precision 0.7697 0.5428
Recall 0.4518 0.4443

Table 4. Performance metrics comparison of c-ResUNet with At-
tention Gates using ELU vs. ReLU activations.
Threshold = 0.2 for ELU and 0.4 for ReLU, Sample size = 600
with train-time data augmentation, Batch size = 4

0.5694 and 0.5766. However, notably the attention-based
model with ELU has a slightly higher precision 0.7697
compared to 0.6821, which could make sense based on how
attention might help the model learn how to ignore noisier
parts of the image. This could also explain why there is a
steep plummet in F1 scores with threshold values in Figure
3 – the model only segments cells its highly confident
about. This less confident approach could also be why there
is a slight difference in the MAE between the 2 models,
with the attention-based model having an MAE of 5.6 cells
compared to the other model’s MAE of 4.9. Some of the
limitations of the newly trained models may stem from
dataset size and variability, as evidenced by the significant
performance gap in every metric between our models
and the pre-generated model from Morelli and Clissa [1],
which benefited from a substantially larger dataset (2256
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images), weight maps, and targeted oversampling of
artifact-containing regions. These results highlight how
both model architecture and data availability play critical
roles in achieving robust performance.

Both the ELU and ReLU-based attention gating c-
ResUnet models achieved similar F1 Scores (0.5694 for
ELU vs. 0.4886 for ReLU). However, the ReLU based
model did perform worse in every metric. The ReLU vari-
ant exhibited lower precision and higher MAE, suggesting
it was more prone to over-segmentation, i.e. detecting
cell regions where none existed, possibly due to ReLU’s
tendency to generate sparse but high-activation outputs.
This behavior aligns with the observed positive mean
percentage error (MPE = 0.1263), indicating a consistent
overestimation in predicted cell counts.

3.5. Qualitative Image Analysis

In the qualitative results, as shown in figures 5 and 6, we
observe that the attention-based model using ELU performs
better in cluttered regions where cells are densely packed.
Unlike the baseline model, which tends to overpredict and
merge adjacent cells, the attention-based variant appears
more conservative in its predictions. This restraint likely
helps it distinguish between tightly grouped cells, resulting
in improved segmentation in these challenging scenarios.
This behavior suggests that attention gates help the model
focus on cell boundaries and reduce over-segmentation.

In Figure 7, we observe a failure mode of the ReLU-
based attention-gated c-ResUNet, where the model predicts
too strongly around cell regions, causing neighboring cells
to merge together.

Figure 4. Image of cluttered cells

Figures 8–10 highlight another challenge: images with
bright or noisy backgrounds. In Figure 9, the standard c-
ResUNet performs slightly better by producing a stronger
and more distinct probability map. However, as shown in

Figure 5. Cell Segmentation Visualization for cluttered cells image
using simple c-ResUnet model

Figure 6. Cell Segmentation Visualization for cluttered cells image
using c-ResUnet with ELU and attention gates. On the right side,
it is clear the cells are separated more.

Figure 7. Cell Segmentation Visualization for cluttered cells im-
age using c-ResUnet with ReLU and attention gates. Here, it
is clear that the model shows high activation but tends to merge
nearby cells, indicating difficulty in distinguishing densely packed
regions.

Figure 8. Image of cells with bright background
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Figure 9. Cell Segmentation Visualization for bright/noisy cells
image using simple c-ResUnet model. The probability map is a
little stronger than the attention one below.

Figure 10. Cell Segmentation Visualization for bright/noisy cells
image using c-ResUnet with ReLU and attention gates. The atten-
tion model fails here.

Figure 10, the attention-based model fails to accurately de-
lineate cells under these conditions, suggesting that atten-
tion mechanisms may be more sensitive to image artifacts
or brightness variations.

4. Conclusion
In this paper, we evaluated variations of the c-ResUNet

architecture for cell segmentation, including the integra-
tion of attention gates and different activation functions.
Our experiments demonstrate that while attention mecha-
nisms can improve segmentation in cluttered cell environ-
ments by enhancing focus on salient boundaries, they are
also more sensitive to data limitations and image artifacts.
We observed that ELU activations provided slightly more
stable performance compared to ReLU, which sometimes
led to overconfident predictions and merged cell regions.
Quantitative metrics such as F1 Score, MAE, and precision
showed the tradeoffs between models, with the original pa-
per’s model still outperforming ours, highlighting the im-
portance of large, well-augmented training sets.

4.1. Further Work

To further improve segmentation performance, future
work could explore using Leaky ReLU as an activation
function, which may help mitigate the vanishing gradient
issue seen with standard ReLU, especially in cluttered re-
gions. We can also try a different optimizer such as SGD to

see if it improves performance. Additionally, training on the
full sample dataset could allow the model to generalize bet-
ter, particularly for attention-based architectures that rely
on learning spatial context from lots of data. Lastly, inte-
grating Vision Transformers (ViTs) [3], which have shown
promise in biological image segmentation tasks due to their
ability to model long-range dependencies, could provide a
strong alternative to convolution-based architectures like c-
ResUnet.
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